博客
关于我
顺时针打印矩阵
阅读量:338 次
发布时间:2019-03-03

本文共 1765 字,大约阅读时间需要 5 分钟。

矩阵打印与螺旋遍历的技巧

编写高效的矩阵打印算法是编程中的一个常见问题。本文将详细介绍两种常用的解决方案,并分享一些优化技巧。

一、矩阵打印的常规实现

传统的矩阵打印算法通常采用层序遍历的方式,从外向内逐层打印矩阵的元素。以下是一个经典的实现思路:

class Solution:    def printMatrix(self, matrix):        res = []        if not matrix:            return res        rows = len(matrix)        cols = len(matrix[0])        direction = 0  # 0: left, 1: right, 2: down, 3: up        left = 0        right = cols - 1        top = 0        bottom = rows - 1        while left <= right and top <= bottom:            # 从左到右打印第一行            for i in range(left, right + 1):                res.append(matrix[top][i])            top += 1            if top > bottom:                break            # 从右到左打印最后一列            for i in range(top, bottom + 1):                res.append(matrix[i][right])            right -= 1            if right < left:                break            # 从下往上打印最后一行            for i in range(right, left - 1, -1):                res.append(matrix[bottom][i])            bottom -= 1            if bottom < top:                break            # 从左到右打印第一列            for i in range(bottom, top - 1, -1):                res.append(matrix[i][left])            left += 1            if left > right:                break        return res

二、螺旋遍历的优化版本

另一种优化方案是采用“螺旋遍历”方法,从矩阵的外向内逐层遍历,逐步缩小打印范围。以下是一个高效实现的代码:

class Solution:    def spiralOrder(self, matrix):        res = []        while matrix:            # 打印当前行            res += matrix.pop(0)            # 将矩阵转置并反转行            matrix = list(zip(*matrix))[::-1]        return res

三、技巧与优化

  • 减少代码复杂度

    上述两种方法各有优劣,传统的循环方法虽然直观但代码较长,螺旋遍历方法则通过巧妙的转置和反转操作将复杂度降低到最低。

  • 内存优化

    在处理大型矩阵时,传统方法可能导致内存爆炸式增长,而螺旋遍历方法则能够更高效地处理。

  • 适用场景

    • 如果矩阵的规模较小,传统方法的直观性更有优势。
    • 对于大规模矩阵,螺旋遍历方法更为高效且节省内存。
  • 四、总结

    选择哪种方法取决于具体需求。传统方法简单易懂,螺旋遍历则在大规模数据下表现更佳。无论是选择哪种方案,理解其核心逻辑是提升编程能力的关键。

    转载地址:http://cysl.baihongyu.com/

    你可能感兴趣的文章
    NutzWk 5.1.5 发布,Java 微服务分布式开发框架
    查看>>
    NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现
    查看>>
    Nuxt Time 使用指南
    查看>>
    NuxtJS 接口转发详解:Nitro 的用法与注意事项
    查看>>
    NVelocity标签使用详解
    查看>>
    NVelocity标签设置缓存的解决方案
    查看>>
    Nvidia Cudatoolkit 与 Conda Cudatoolkit
    查看>>
    NVIDIA GPU 的状态信息输出,由 `nvidia-smi` 命令生成
    查看>>
    NVIDIA-cuda-cudnn下载地址
    查看>>
    nvidia-htop 使用教程
    查看>>
    nvidia-smi 参数详解
    查看>>
    Nvidia驱动失效,采用官方的方法重装更快
    查看>>
    nvmw安装node-v4.0.0之后版本的临时解决办法
    查看>>
    nvm切换node版本
    查看>>
    nvm安装 出现 Error retrieving “http://xxxx/SHASUMS256.txt“: HTTP Status 404 解决方法
    查看>>
    nvm安装以后,node -v npm 等命令提示不是内部或外部命令 node多版本控制管理 node多版本随意切换
    查看>>
    ny540 奇怪的排序 简单题
    查看>>
    NYOJ 1066 CO-PRIME(数论)
    查看>>
    NYOJ 737:石子合并(一)(区间dp)
    查看>>
    nyoj 91 阶乘之和(贪心)
    查看>>